Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 77(12): 1411-1423, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801484

RESUMO

Spatial heterodyne Raman spectrometers (SHRSs) are modified forms of Michelson interferometers, except the mirrors in a Michelson interferometer are replaced with stationary diffraction gratings. This design removes the need for an entrance slit, as is the case in a dispersive spectrometer, and removes the need to scan the spectrum by using a moving mirror in a modern Michelson interferometer. In previous studies, various SHRS variants, such as free-standing two-grating SHRS, single-grating SHRS (1g-SHRS), monolithic SHRS (mSHRS), and single-grating mSHRS (1g-mSHRS), have been evaluated. However, the present study exclusively focuses on the 1g-mSHRS configuration. The 1g-mSHRS and 1g-SHRS increase the spectral range at fixed grating line density while trading off spectral resolution and resolving power. The mSHRS benefits from increased rigidity, lack of moving parts, and reduced footprint. In this study, we investigate how the choice of detector impacts the performance of the 1g-mSHRS system, with a specific focus on evaluating the performance of three types of cameras: charged-coupled device (CCD), intensified CCD (ICCD), and complementary metal-oxide-semiconductor (CMOS) cameras. These systems were evaluated using geological, organic, and inorganic samples using a 532 nm continuous wave laser for the CMOS and CCD cameras, and a 532 nm neodymium-doped yttrium aluminum garnet pulsed laser for the ICCD camera. The footprint of the 1g-mSHRS was 3.5 × 3.5 × 2.5 cm3 with a mass of 272 g or 80 g, depending on whether the monolith housing is included or not. We found that increasing the number of pixels utilized along the x-axis of the camera increases fringe visibility (FV) and optimizes the resolution (by capturing the entirety of the grating and magnifying the fringes). The number of pixels utilized in the y-axis, chip size, and dimensions, affect the signal-to-noise ratio of the systems. Additionally, we discuss the effect of pixel pitch on the recovery of Fizeau fringes, including the relationship between the Nyquist frequency, aliasing, and FV.

2.
Appl Spectrosc ; 77(5): 534-549, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36223496

RESUMO

Advances in Raman instrumentation have led to the implementation of a remote dispersive Raman spectrometer on the Perseverance rover on Mars, which is used for remote sensing. For remote applications, dispersive spectrometers suffer from a few setbacks such as relatively larger sizes, low light throughput, limited spectral ranges, relatively low resolutions for small devices, and high sensitivity to misalignment. A spatial heterodyne Raman spectrometer (SHRS), which is a fixed grating interferometer, helps overcome some of these problems. Most SHRS devices that have been described use two fixed diffraction gratings, but a variance of the SHRS called the one-grating SHRS (1g-SHRS) replaces one of the gratings with a mirror, which makes it more compact. In a recent paper we described monolithic two-gratings SHRS, and in this paper, we investigate a single-grating monolithic SHRS (1g-mSHRS), which combines the 1g-SHRS with a monolithic setup previously tested at the University of South Carolina. This setup integrates the beamsplitter, grating, and mirror into a single monolithic device. This reduces the number of adjustable components, allows for easier alignment, and reduces the footprint of the device (35 × 35 × 25 mm with a weight of 80 g). This instrument provides a high spectral resolution (∼9 cm-1) and large spectral range (7327 cm-1) while decreasing the sensitivity to alignment with a field of view of 5.61 mm at 3m. We discuss the characteristics of the 1g-mSHRS by measuring the time-resolved remote Raman spectra of a few inorganic salts, organics, and minerals at 3 m. The 1g-mSHRS makes a good candidate for planetary exploration because of its large spectral range, greater sensitivity, competitively higher spectral resolution, low alignment sensitivity, and high light throughput in a compact easily aligned system with no moving parts.

3.
Appl Spectrosc ; 75(11): 1427-1436, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34309445

RESUMO

We have developed a compact instrument called the "COmpact COlor BIofinder", or CoCoBi, for the standoff detection of biological materials and organics with polyaromatic hydrocarbons (PAHs) using a nondestructive approach in a wide area. The CoCoBi system uses a compact solid state, conductively cooled neodymium-doped yttrium aluminum garnet (Nd:YAG) nanosecond pulsed laser capable of simultaneously providing two excitation wavelengths, 355 and 532 nm, and a compact, sensitive-gated color complementary metal-oxide-semiconductor camera detector. The system is compact, portable, and determines the location of biological materials and organics with PAHs in an area 1590 cm2 wide, from a target distance of 3 m through live video using fast fluorescence signals. The CoCoBi system is highly sensitive and capable of detecting a PAH concentration below 1 part per billion from a distance of 1 m. The color images provide the simultaneous detection of various objects in the target area using shades of color and morphological features. We demonstrate that this unique feature successfully detected the biological remains present in a 150-million-year-old fossil buried in a fluorescent clay matrix. The CoCoBi was also successfully field-tested in Hawaiian ocean water during daylight hours for the detection of natural biological materials present in the ocean. The wide-area and video-speed imaging capabilities of CoCoBi for biodetection may be highly useful in future NASA rover-lander life detection missions.


Assuntos
Lasers de Estado Sólido , Fluorescência , Fósseis , Hidrocarbonetos
4.
Appl Spectrosc ; 75(6): 739-746, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33635100

RESUMO

We describe the fabrication of an underwater time-gated standoff Raman sensor, consisting of a custom Raman spectrometer, custom scanner, and commercial diode-pumped pulsed 532 nm laser all located inside a pressure housing. The Raman sensor was tested in the laboratory with samples in air, a tank containing tap water and seawater, and in the coastal Hawaiian harbor. We demonstrate our new system by presenting standoff Raman spectra of some of the chemicals used in homemade explosive devices and improvised explosive devices, including sulfur, nitrates, chlorates, and perchlorates up to a distance of ∼6 m in seawater and tap water. Finally, the Raman spectra of these hazardous chemicals sealed inside plastic containers submersed in the Hawaiian Harbor water are also presented.

5.
Appl Spectrosc ; 75(3): 299-306, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32613858

RESUMO

Raman spectroscopy is a technique that can detect and characterize a range of molecular compounds such as water, water ice, water-bearing minerals, and organics of particular interest to planetary science. The detection and characterization of these molecular compounds, which are indications of habitability on planetary bodies, have become an important goal for planetary exploration missions spanning the solar system. Using a compact portable remote Raman system consisting of a 532 nm neodymium-doped yttrium aluminum garnet- (Nd:YAG-) pulsed laser, a 3-in. (7.62 cm) diameter mirror lens and a compact spectrograph with a miniature intensified charge coupled device (mini-ICCD), we were able to detect water (H2O), water ice (H2O-ice), CO2-ice, hydrous minerals, organics, nitrates, and an amino acid from a remote distance of 122 m in natural lighting conditions. To the best of our knowledge, this is the longest remote Raman detection using a compact system. The development of this uniquely compact portable remote Raman system is applicable to a range of solar system exploration missions including stationary landers for ocean worlds and lunar exploration, as they provide unambiguous detection of compounds indicative of life as well as resources necessary for further human exploration.

6.
Appl Spectrosc ; 75(2): 208-215, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32662290

RESUMO

Spatial heterodyne spectrometers are members of the static Fourier transform class of spectrometers, well-regarded for their ability to acquire high-resolution, high wavelength precision emission spectra in compact, light footprint packages. In a spatial heterodyne spectrometer experiment, a Fizeau fringe is generated for every spectral feature in a given spectrum, and spatial heterodyne spectrometer records the superposition of all Fizeau fringes in the spectrum on a detector. Hence, the sensitivity of spatial heterodyne spectrometers is constrained by uncorrelated, multiplicative photon noise that limits the detection of spectral features to those that are more luminous than the square root of the total incident flux onto the detector. In essence, powerful spectral features create a rising floor of noise that wash out less luminous features. In the present work, we introduce a novel spectrometer coupling, that being an Amici prism spectrometer in series with spatial heterodyne spectrometer, that correlates photon shot noise along one axis of a detector that in turn suppresses multiplicative photon noise within each row of the interferogram image. We demonstrate that this spectrometer pairing facilitates the measurement of weak Raman spectral features that, in a traditional spatial heterodyne spectrometer measurement, would be washed out by multiplicative photon noise.

7.
Space Sci Rev ; 217(1): 4, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33380752

RESUMO

The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam's body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245-340 and 385-465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535-853 nm ( 105 - 7070 cm - 1 Raman shift relative to the 532 nm green laser beam) with 12 cm - 1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well.

8.
Appl Spectrosc ; 74(2): 233-240, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31517522

RESUMO

The detection and identification of materials from a distance is highly desirable for applications where accessibility is limited or there are safety concerns. Raman spectroscopy can be performed remotely and provides a very high level of confidence in detection of chemicals through vibrational modes. However, the remote Raman detection of chemicals is challenging because of the very weak nature of Raman signals. Using a remote Raman system, we performed fast remote detection of various solid and liquid chemicals from 1752 m during afternoon hours on a sunny day in Hawaii. Remote Raman systems with kilometer target range could be useful for chemical detection of volcanic gases, methane clathrate icebergs or fire ice, toxic gas clouds and toxic waste, explosives, and hazardous chemicals. With this successful test, we demonstrate the feasibility of developing future mid-size remote Raman systems suitable for long range chemical detection using helicopters and light airplanes.

9.
Appl Spectrosc ; 72(6): 933-942, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29381083

RESUMO

A spatial heterodyne Raman spectrometer (SHRS) is a variant of a Michelson interferometer in which the mirrors of a Michelson are replaced with two stationary diffraction gratings. When light enters the SHRS, it is reflected off of diffraction gratings at frequency-dependent angles that produce crossed wavefronts in space that can be imaged using a plane array detector. The crossed wavefronts, which represent a superposition of interference fringes, are converted to a Raman spectrum upon applying a Fourier transform. In this work, a new approach to intensity calibration is discussed that originates from modeling the shot noise produced by the SHRS and converting the real noise to idealized white noise as predicted by theory. This procedure has two effects. First, the technique produces Raman spectra with white noise. Second, when the mean of the noise is normalized to one, the technique produces Raman spectra where the intensity axis is equivalent to signal-to-noise ratio. The data reduction technique is then applied to the measurement of materials of interest to the planetary science community, including minerals and inorganic salts, at a distance of 5 m from the collecting optic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...